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Executive Stock Options: Portfolio Effects

Abstract

Since executives typically receive new grants of stock options (ESOs) each year, longer-

serving executives often have portfolios of ESOs with differing strikes and maturities. Valuation

models for stand-alone ESO grants have shown that trading restrictions, which force executives

to bear unhedgeable risk until the options are exercised, induce earlier exercise and hence a

lower cost to shareholders than in a risk-neutral setting. However, since unhedgeable risk varies

non-linearly with portfolio size and composition, the executive’s exercise strategy and thus also

the shareholder cost of an option held as part of a portfolio depend also on the remainder of

the executive’s ESO portfolio. We show that such portfolio effects matter - lowering both the

moneyness required for exercise and the shareholder cost of most options in a portfolio. In

contrast to a risk-neutral setting, both exercise thresholds and costs depend on an option’s

position in the optimal exercise order. An option’s cost varies with the maturities and, non-

linearly, with the strike prices of other options in the executive’s portfolio. The model explains

several empirical findings in the literature - which options are attractive to exercise first, how

exercise can be induced by a new grant, and the prevalence of early exercise.

Keywords: Executive stock options, employee stock options, option portfolios, risk aversion,

optimal exercise, American options

JEL Classification Numbers: C61, G11, G13, G30, J33
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1 Introduction

Stock options have been an important component of executive compensation packages since the

early 1990s. By 2001, stock options accounted for over half of median compensation for CEO’s

in US S&P 500 firms. In 2008 stock options still represented 25% of total pay whilst restricted

stock comprised a further 32% (Conyon et al (2011)). More than half of the S&P 500 CEO’s

have received both options and restricted stock annually since 2006. Similarly, Frydman & Sachs

(2010) find options represent around 40% of total compensation for top executives (2000-2005).

Typically, executives receive a new grant of executive stock options (ESOs) each year, so

after several years with a firm, executives can build up a portfolio of options, each with differing

strike prices and remaining times to maturity. It is well known that because of restrictions on

their ability to hedge these option grants using the firm’s shares, the executive’s valuation of

and optimal exercise threshold for these ESOs can be substantially lower than that in a Black-

Scholes world, and that as a result the cost of the ESOs to the firm’s shareholders can also be

considerably less than the options’ Black-Scholes values. However, thus far the literature has

considered only single grants of options with the same strike price and time to maturity. In

this paper we investigate the effects of an executive holding multiple grants of ESOs, each with

differing strike price and time to maturity, on the exercise threshold and cost to the shareholders

of each option.

Understanding executives’ exercise behavior is key to studying their subjective valuation and

the cost to shareholders of the options granted. A better knowledge of valuation and costs will

assist firms in awarding options more effectively. Estimates of shareholder costs are also required

to satisfy accounting regulations in the US and Europe (FASB 123 and IFRS 2). Executives’

exercise behavior is also of wider importance in the corporate finance literature, eg. Malmendier

and Tate (2005) use option exercise to detect optimism1 and Bergstresser and Philippon (2006)

interpret option exercise as a signal of private information. In this paper we contribute new

findings on exercise behavior, valuation and shareholder costs when the executive holds several

option grants. In particular, we answer the question raised by Carpenter, Stanton & Wallace

(2010): “It would be useful to understand which options are most attractive to exercise first” (p

318).

We find that the presence of additional options in an executive’s ESO portfolio can change the

1In particular, in constructing their measures of overconfidence they study “late” exercise behavior and cali-

brate a single threshold for all CEOs which does not take into account the heterogeneity of CEOs option portfolios.
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level and shape of a particular option’s exercise threshold, even introducing jump discontinuities.

This is due to interaction effects between different options in the portfolio and means that

thresholds and costs for individual options in a portfolio cannot be calculated on a stand-alone

basis, but need to be determined for the portfolio as a whole, and that thresholds and costs for a

particular option will vary, depending on the composition of the portfolio it is a part of. Overall,

the presence of additional options lowers the exercise threshold for some, if not all, options in

the executive’s portfolio, including the lowest threshold at which any option is first exercised,

and increases the proportional discount of the cost of the portfolio to the shareholders, relative

to its Black-Scholes value.

The inability of the executive to hedge her option portfolio using the firm’s shares exposes

her to risk whilst she continues to hold the options. If she can hedge using the market, the

systematic portion of this risk can be removed; however the firm-specific risk of her position

remains unhedgeable. Under utility-based valuation, the effective cost of this unhedgeable risk

reduces the executive’s valuation of her options, but only whilst she continues to hold them:

once they have been exercised, the shares acquired on exercise will be sold and the proceeds

invested (optimally) in tradeable securities. Her early exercise strategy thus takes account of the

reduction in her unhedgeable risk on exercise, and so she exercises at a lower level of moneyness

than in a world where risks can be perfectly hedged.

Portfolio effects arise because unhedgeable risk increases non-linearly with portfolio size. For

example, the unhedgeable risk associated with a holding of two identical options is four times

the unhedgeable risk associated with a single option, and the reduction in unhedgeable risk

associated with exercising the first of these two identical options is three times the unhedgeable

risk reduction associated with exercising the last. The optimal exercise threshold for an option if

it is the first option to be exercised in a portfolio is distinctly lower than the exercise threshold for

the same option if it is exercised last (or later in the exercise order). More generally, the optimal

exercise threshold for a particular option is lower, the larger the option portfolio remaining on

exercise. If the option’s position in the optimal exercise order for the portfolio changes, say

from penultimate- to last-to-be-exercised, or vice versa, then the unhedgeable risk reduction on

exercise also alters instantaneously, so the exercise threshold jumps (up if the new position in

the exercise order is later, down if it is earlier).

In a portfolio with multiple options, the exercise threshold for a particular option at any

time is never higher than its threshold as a stand-alone option, but it may be lower if the
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option is not last-to-be-exercised. The moneyness at which an option is exercised when it is

part of a portfolio depends on the level of the executive’s exposure to unhedgeable risk from the

portfolio after exercise (the greater the exposure from the portfolio after exercise, the greater the

reduction in exposure due to exercise and the lower moneyness at which the option is exercised.)

So factors which alter this exposure, most importantly the size, but also the level of moneyness

and maturity dates of the remaining portfolio, affect the exercise threshold. All else equal,

increasing the size of the portfolio by adding an option decreases the moneyness at which the

first option is exercised: this clearly increases the executive’s exposure after exercise and the

marginal exposure decreases on exercise. Keeping all else fixed, increasing the strike price of one

or more options in the remaining portfolio reduces the executive’s exposure and thus increases

the moneyness at which the first option is exercised, whereas increasing the time to maturity

of one or more options in the remaining portfolio increases the executive’s exposure (since the

unhedgeable risk is borne for longer), so the moneyness at which the first option is exercised

decreases.

Lower exercise thresholds generally lead to a reduction in the cost of an option to the share-

holders.2 Even for a single option, the lower optimal exercise threshold reduces the ESO cost

to the shareholders relative to the Black-Scholes value of a similar traded option. An executive

with multiple options will exercise some of these at even lower moneyness thresholds, increasing

the proportional discount relative to Black-Scholes still further for these options and so also

increasing the proportional discount for the portfolio as a whole. For example (see Tables 1 and

2) combining two at-the-money options with different times to maturity (5 and 10 years) can

decrease the cost of the 5-year option from 53% to 30% of the Black-Scholes value, a proportional

discount of 44% relative to its cost as a stand-alone option. The portfolio cost is over 20% lower

than the sum of the costs of individual options, and only 40% of the Black-Scholes world value.

Importantly, the shareholder cost of an option depends on the composition of the remainder

of the executive’s portfolio. The primary reason is because the moneyness of the early exercise

threshold, and hence the shareholder cost depends critically on the option’s location in the

optimal exercise order. Generally, the later the option is in the exercise order, the higher

its moneyness threshold and the higher its cost3 (lower its proportional discount). However,

2Shareholders are assumed to be well-diversified with no restrictions on trading and thus value ESOs in a

perfect market (Black-Scholes world) taking into account the executive’s exercise strategy. The lower the exercise

threshold, the larger the difference from the Black-Scholes world threshold and the greater the reduction in cost.
3If the exercise order changes during the option’s life, the longer its position is later in the exercise order, the
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the exercise order depends on the strike prices and times to maturity of the options in the

portfolio. All else equal, the higher the strike price and the longer the time to maturity, the

later in the exercise order an option is. So if the strike prices and times-to-maturity are co-

monotonic, options are exercised in order of increasing strike price, so options with the lowest

strike price (and shortest time to maturity) have the largest proportional cost discounts for

shareholders relative to Black-Scholes. However, if the strike prices and times to maturity are

not co-monotonic, e.g. a longer-dated option has a lower strike price, the optimal exercise order

needs to be calculated as part of the solution. We find options are generally exercised in order

of increasing strike price, but options which are close to maturity may be exercised earlier than

their strike price would indicate.

These interaction effects cause two new features of ESO costs. Firstly, the shareholder cost of

a particular ESO with fixed strike price and time to maturity varies non-monotonically with the

strike prices and times to maturity of the other options in the executive’s portfolio. Secondly,

holding the remainder of an executive’s portfolio constant, the shareholder cost of a particular

ESO may no longer be monotonically decreasing in its own strike price; it can have local minima.

Both findings are in stark contrast to the standard results for exchange-traded options valued

under absence of arbitrage, where an option’s value is independent of the portfolio in which it

is held.

Firms are concerned about the overall cost of options granted to executives, but specifically

the cost of the current option grant. A key implication of the nonlinearity of the shareholder

cost of ESOs is that this should be measured as the marginal or incremental cost of the grant. In

a Black-Scholes world, this would equal its stand-alone value; however with portfolio effects this

is no longer true: the incremental cost is always lower than the stand-alone cost, and varies with

the executive’s existing exposure to unhedgeable firm-specific risk. So firms should recognize

that the cost of a given option grant (and indeed the value of that grant to the executive) will

vary depending on the executive’s existing portfolio of options on the grant date.

Overall then, portfolio effects complicate matters, but they have important implications for

exercise thresholds and costs and should not be overlooked. Consider, for example, two exec-

utives at the same firm, A and B, who have the same level of risk-aversion and ESO holdings

except that A holds one additional option grant (she has been employed longer at the firm).

Overall the cost ofA’s ESO portfolio is greater than the cost of B’s, but the proportional discount

higher its cost.
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relative to stand-alone values will be greater for A, and the incremental cost to shareholders

of A’s additional option is likely to be substantially lower than the cost of that option as a

stand-alone. Furthermore, if it is not optimal for A to exercise his additional option first, then

A will exercise some, if not all, of the options he has in common with B at a lower threshold, and

hence earlier than B, even though they have the same level of risk aversion. Examining exercise

strategies without taking account of portfolio effects might thus erroneously suggest that A had

higher risk aversion than B. Moreover, firms should recognize that the incremental cost to the

shareholders of identical unexpected new option grants to the two executives will be lower for

A than B.

Our paper builds on a large number of studies that consider the valuation of ESOs using

utility-based techniques.4 Lambert, Larcker & Verrecchia (1991), Huddart (1994), Carpenter

(1998), Hall & Murphy (2000, 2002) and Cai & Vijh (2005) use a certainty equivalent framework

to value ESOs assuming the executive’s non-option wealth is invested in exogenously specified,

non-optimized proportions in stock and risk-free bonds. Henderson (2005), Leung & Sircar

(2009) and Carpenter, Stanton & Wallace (2010) value a single grant of identical ESO’s, allowing

optimal investment of the executive’s outside wealth in risk-free bonds and a market asset.5

Whalley (2008) allows in addition restricted stock holdings and retention of shares on exercise.

Of importance for our paper is the fact that the literature typically considers a single option

grant exercised as a block, and does not take into account the portfolio effects we describe. There

are several papers however who consider intertemporal or partial exercise of multiple identical

options; cf. Jain and Subramanian (2004), Grasselli and Henderson (2009), Leung and Sircar

(2009) and Rogers and Scheinkman (2007). These papers identify that the tradeoff between

optionality and unhedgeable risk exposure leads to options being exercised gradually over time,

however there is no role for different strikes and maturities in their settings.

Whilst much of the literature assumes CARA utility, most notably Carpenter, Stanton &

Wallace (2010) employ constant relative risk aversion (CRRA) to study wealth effects on (single)

option exercise and shareholder costs.6 They find that the exercise threshold and shareholder

4Kahl, Liu & Longstaff (2003) consider the valuation of restricted stock in a similar framework.
5See also Detemple & Sundaresan (1999) and Ingersoll (2006).
6Other models to employ CRRA utility include Huddart (1994), Kulatilaka & Marcus (1994), Hall and Murphy

(2002) and Rogers & Scheinkman (2007) but none of these allow for optimal dynamic partial hedging of non-

option wealth in the market asset. Ingersoll (2006) does allow for dynamic hedging but treats a marginal option

position.
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cost differ most from their Black Scholes counterparts when wealth is small. Our study of the

effect of other options in the portfolio highlights that the greater the number of options, the

larger the difference in threshold and the larger the cost discount relative to Black Scholes.

One advantage of our model is that option portfolios tend to be observable whereas executive’s

non-option wealth is typically difficult to identify.

Empirical studies have found support for a number of economic and behavioral factors influ-

encing executives’ early exercise decisions in practice (Huddart & Lang (1996), Heath, Huddart

& Lang (1999), Carpenter, Stanton & Wallace (2012), Armstrong, Jagolinzer & Larcker (2007),

Klein & Maug (2010) and Srivastava (2011)). Much of this empirical evidence is consistent with

utility models which explains their frequent useage in the literature (eg. early exercise even in

the absence of dividends, options exercised earlier at higher volatility firms). Whilst Carpenter,

Stanton & Wallace (2012) recognize that there should be inter-relations between the exercises

of different grants to the same executive, thus far only Klein & Maug (2010) and Armstrong

et al (2007) have tested for aspects of portfolio effects explicitly.7 In short, there is strong evi-

dence of the explanatory importance of portfolio effects - Klein and Maug (2010) remark “The

explanatory power of the option portfolio effects is very large. These effects have been neglected

in previous studies, but they are empirically of first-order importance” (p24). As we will explain,

our model is able to generate these empirical findings. In contrast, some of the empirical findings

of Klein and Maug (2010) and Armstrong et al (2007) cannot be explained by a Black Scholes

or single-grant utility based model.

Klein & Maug (2010) find that the exercise rate increases in the week after an executive has

received a grant of new options.8 We show that the moneyness of the exercise threshold for

whichever option is first-to-be-exercised decreases when another option is unexpectedly added

to a portfolio. If some of the executive’s existing options are in-the-money,9 these option’s

thresholds will jump down, potentially from above to below the current stock price, causing

an increase in their exercise rate. In contrast, under a Black Scholes model, a new grant does

not alter the thresholds for existing options, and thus we would not expect a change in the

7Specifically, Armstrong et al (2007) and Klein and Maug (2010) have used a hazard rate model to estimate

exercise rates. Carpenter et al (2012) use a GMM-based model to estimate an exercise function. Earlier studies

calibrated exercise thresholds to specific option valuation models (Carpenter (1998), Bettis et al (2005))
8Ofek and Yermack (2000) and Srivastava (2011) find related evidence.
9These will be exercised before the new option if it is granted at-the-money with the standard ten years to

maturity, since they are then co-monotonic.
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exercise rate. Similarly, if we were modeling only a single option grant in a utility model, as in

the extant literature, we could not make inferences about the increased likelihood of exercise of

other options.

The remainder of the paper is organized as follows. Section 2 presents the model. Sections 3

and 4 investigate the implications for the exercise thresholds and costs. Robustness issues are

discussed in Section 5 and Section 6 concludes.

2 Model

Consider a risk averse executive who is granted n (American-style) finite-lived non-transferable

call options on the stock of her company. Her investment opportunities consist of a riskless bond

with constant riskless rate r and the market portfolio with price Mt. The executive is restricted

from trading the underlying stock of her company, with price St.
10

The set of n options have maturities TW ≤ TX , ..., TY ≤ TZ and corresponding strikes

KW ,KX , ...,KY ,KZ and we refer to them as option W , X, ..., Y , Z. The notation X(KX , TX)

denotes option X with strike KX and maturity TX . In practice, executive stock options typically

have ten year maturities at grant date, but on a given date, the executive may hold a portfolio of

options from several grants each with varying time to maturity remaining and different strikes.

The prices follow

dS

S
= (ν − q)dt+ ηdB (1)

dM

M
= µdt+ σdZ (2)

where standard Brownian motions B and Z are defined on a probability space (Ω,F ,Fu,P)

where Fu is the augmented σ-algebra generated by {Bu, Zu; 0 ≤ u ≤ t} and their instantaneous

correlation is ρ ∈ [−1, 1]. The volatility of stock returns η, expected return on the stock ν,

proportional dividend yield q > 0, and expected return µ and volatility of the market returns

10Insiders cannot short sell stock as they are prohibited by Section 16-c of the Securities and Exchange Act.

For this reason, we use the term executive for the option holder. Our model could also apply to lower-ranked

employees - whilst they are not subject to Section 16-c short sale restrictions, costs of short selling may limit their

trading. Indeed, evidence of early exercise across all ranks of employees suggests all employees are constrained as

to the hedging they can carry out (Bettis et al (2005), Carpenter, Stanton and Wallace (2012)). Bettis et al (2011)

provide evidence of the use of derivatives by insiders and find evidence that they are primarily used for information

based (insider information) reasons and no evidence that hedging via derivatives is used as diversification against

changes in firm risk. Such deals must be reported to the SEC and generally only involve high-ranking executives.
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σ are all constants. The mean stock return ν is equal to the CAPM return for the stock, given

its correlation with the market, ν = r + β(µ − r); β = ρη/σ. In common with the utility-based

ESO literature, we abstract from leverage and dilution considerations, which should not affect

our main results.11

The restricted executive faces some unhedgeable risk through her option position since ρ ∈

(−1, 1). Allowing the executive to trade in the market asset enables her to partially hedge the

risk she faces from her option portfolio. She holds a cash amount θs in M at time s and invests

the remainder of her wealth at the riskless rate r. The executive’s trading or outside wealth

Wu;u ≥ t follows

dWu = (rWu + θu(µ− r))du+ θuσdZu; Wt = w (3)

given initial wealth w. The remaining unhedgeable risk that cannot be hedged away is rep-

resented by η2e = (1 − ρ2)η2 and thus is greater, the lower the (absolute value of) correlation

between the stock price and the market.

An executive with an option portfolio as we have described will maximize her expected

utility of terminal wealth at T̃ (where we take T̃ ≥ TZ) over the choice of exercise times

τW , τX , ..., τY , τZ of the options and the choice of outside investment in the market θu (satisfying

integrability condition E
∫ T̃
t θ2udu < ∞) and bond. We assume the executive has constant

absolute risk averse (CARA) utility denoted by U(x) = −e−γx; γ > 0.12 Each time an exercise

occurs, the cash proceeds13 are added to the executive’s outside wealth position or trading

portfolio (and will continue to be optimally invested in the market and bond until T̃ ). Denote

the ordered exercise times by τ (n) ≤ ... ≤ τ (1) where τ (i) is the exercise time at which there are

i options remaining in the portfolio.14

11Denis and Rendleman (2008) consider multiple warrant issues and potential dilution effect of each issuance

on the remaining warrants. See also the classic works of Constantinides (1984) and Spatt and Sterbenz (1988)

on sequential exercise. Their focus is the impact of dilution on costs, whereas our paper explores the interdepen-

dencies of different American style options arising from the impact of non-hedgeable risks and the effect of these

dependencies on shareholder cost.
12Since we treat portfolio effects, we do not simultaneously treat CRRA utility which would further complicate

the model. Specifically we would require an additional wealth variable which would increase the dimension of the

free boundary problem. We refer to Carpenter et al (2010) for a detailed analysis in a single-exercise model.
13Executives tend to sell shares immediately upon exercise (Ofek and Yermack (2000) and Huddart and Lang

(1996))
14Hence τ (n) = τW ∧ τX ∧ ... ∧ τY ∧ τZ is the earliest time at which an option is exercised, and τ (1) =

τW ∨ τX ∨ ... ∨ τY ∨ τZ the last time an exercise occurs.
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Denote by Π the portfolio of unexercised options and by |Π| the size of this portfolio or

the number of remaining options. For example, if options X and Z remain unexercised then

Π = {X,Z} and |Π| = 2. We also define the shortest maturity left in the portfolio by Tmin =

min{Tπ : π ∈ Π}. The value to the executive V Π(u,Wu, Su) with remaining options Π, current

wealth Wu and current stock price Su solves the variational inequalities:

V Π(u,Wu, Su) ≥ max
π∈Π

{V Π\{π}(u,Wu + (Su −Kπ)
+, Su)} (4)

∂V Π

∂t
+ sup

θ
{LV Π} ≤ 0 (5)

where the differential operator L is defined by

L =
η2s2

2

∂2

∂s2
+ (ν − q)s

∂

∂s
+ ρθσηs

∂2

∂w∂s
+

θ2σ2

2

∂2

∂w2
+ [θ(µ− r) + rw]

∂

∂w
. (6)

If the stock is worthless then options are out-of-the-money and the executive optimally invests

her current wealth into the market and riskless bond until the terminal date T̃ , giving boundary

condition V Π(u,Wu, 0) = M(u,Wu, T̃ ) where

M(t, w, T̃ ) = sup
{θs}t≤s≤T̃

EU(WT̃ |Wt = w) = −e−γwer(T̃−t)
e−

(µ−r)2

σ2 (T̃−t) (7)

which is simply the indirect utility from the standard Merton (1971) optimal portfolio choice

problem. A second set of boundary conditions is obtained at each option maturity,

∀{π} ∈ Π; V Π(Tπ,WTπ , STπ) = V Π\{π}(Tπ,WTπ + (STπ −Kπ)
+, STπ). (8)

The optimal exercise times τ (n) ≤ ... ≤ τ (1) are characterized by15

τ (|Π|) = inf{t ≤ u ≤ Tmin : V Π(u,Wu, Su) = max
π∈Π

{V Π\{π}(u,Wu + (Su −Kπ)
+, Su)}} (9)

This says an option from an existing portfolio Π is exercised when the value from continuing

to hold it is sufficiently low that it equals the value from exercising a particular option π (and

continuing with the portfolio without this option where the payoff Su−Kπ is optimally invested

in the bond and market). The option that is exercised from the portfolio is the one that gives

the maximum continuation value for the remaining portfolio, including the reinvestment of the

15When only one option remains, |Π| = 1 and the optimal exercise time is given by

τ
(1) = inf{t ≤ u ≤ Tπ : V Π(u,Wu, Su) = V

∅(u,Wu + (Su −Kπ)
+
, Su)}

where V ∅(u,Wu, Su) = M(u,Wu, T̃ ).
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option proceeds. In the Appendix we give details of the separation of variables, transformations

and numerical methods to solve the above free boundary problem.

The solution to the problem involves finding the exercise threshold S(|Π|)(t) for the next

option to be exercised when the portfolio contains the remaining options Π. These are given

in (17) (see Appendix). As with standard American options, we can then describe the optimal

exercise time for the next option when |Π| remain as the first time the stock price reaches this

exercise threshold,

τ (|Π|) = inf{t ≤ u ≤ Tmin : Su = S(|Π|)(u)}. (10)

Once we have solved for each threshold S(|Π|)(t), we can infer the optimal exercise boundary for

each option π ∈ Π calculated as part of the portfolio, denoted Sπ(t); t ≤ Tπ. The corresponding

optimal exercise time for each option π ∈ Π is

τπ(t) = inf{t ≤ u ≤ Tπ : Su = Sπ(u)} (11)

For comparison, we also calculate the exercise thresholds Sπ
S(t) of each option as a stand-

alone, ie. if the portfolio consisted of a single option. These are computed via (17) with |Π| = 1.

Finally, following Henderson (2005), Carpenter et al (2010), Leung and Sircar (2009) amongst

others, we define the subjective value pΠ(t, s) of the portfolio of remaining options Π to the

executive as the amount of cash which invested optimally would give the same expected utility

as the options16

V Π(u,w, s) = M(u,w + pΠ(u, s), T̃ ). (12)

Again, the subjective value of a particular option as a stand-alone is computed with |Π| = 1.

3 Exercise thresholds

We first focus on the executive’s optimal exercise thresholds since option exercises are observable

in the market, and are inputs into both the executive’s valuation and the shareholder’s costs of

the option portfolio. Exercise decisions are of independent interest as they may give insights

into executive preferences and lead to benchmarks useful in broader corporate finance research.

Since our focus in this paper is on impact of different option strikes and maturities we take

a portfolio with n = n1 + n2 options where n1 = n2 = 1. This will be our base portfolio for

16In the Appendix, we characterize the free boundary problem that pΠ(t, s) must solve, see (19)-(21).
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much of the remainder of the paper. Later in Section 5 we will extend to consider portfolios

with further options.

It is well known that the exercise threshold for a single executive stock option lies below the

equivalent threshold in a Black-Scholes setting, because of the effect of unhedgeable risk on the

executive’s option value. Whilst she continues to hold the option, the executive bears additional

risk due to her exposure to the firm’s stock price, which she is unable perfectly to hedge. On

exercise however, the executive sells the shares she receives and thus eliminates her exposure to

this unhedgeable risk. The unhedgeable risk exposure reduces the value of continuing to hold

the option to the executive and so decreases the threshold at which she optimally exercises the

option.

3.1 A Single Grant

Figure 1 shows how the exercise thresholds evolves over time for a portfolio of two identical

options, both with strike KY = 10 and maturity TY = 10.17 18 The dashed line is the executive’s

optimal threshold taking account of unhedgeable risk for a single option as a stand-alone. It is

significantly lower than the highest solid line, which represents the Black-Scholes world threshold,

for all times to maturity, showing how unhedgeable risk decreases the level of the threshold

throughout the option’s life. Of course the Black-Scholes world threshold remains the same

regardless of whether the executive is exercising one or many identical options, since all risk is

hedgeable and there is no need to unwind risk gradually over time.

When determining whether to exercise the option, the executive trades off the benefits of

continuing to hold the option (interest on the deferred payment of the strike price), with the

costs, which include not only the foregone dividend yield, as in the Black-Scholes world, but also

the cost of the unhedgeable risk exposure.19 The additional cost of ongoing unhedgeable risk

exposure reduces the threshold from the Black-Scholes threshold, by more, the greater the exec-

utive’s risk aversion and the greater the risk to which she is exposed.20 Furthermore, the effects

of unhedgeable risk increase with the length of time the risk is borne. So whilst the convexity

17We take ρ = 0, so all risk is unhedgeable.
18In practice, ESO’s commonly have maturities of ten years.
19We compare the partial differential equation for the option value (see Appendix, (19)) with the Black Scholes

pde given in (24). The additional term representing the effects of unhedgeable risk in (19) is like a non-constant

increase in the dividend yield which scales with the executive’s risk aversion, γ, the unhedgeable variance of the

stock price, η2(1− ρ2), and her exposure to this, measured by the option delta.
20For more details see Sun (2011).
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of the option payoff still means that the option value to the executive and hence the optimal

exercise threshold increases rapidly as the time to maturity increases from zero, the counter-

acting reduction in option value due to unhedgeable risk means the threshold stops increasing

at a lower time to maturity and can even decrease as the time to maturity increases. (See also

Carpenter et al (2010)). Again, the difference in the slopes of the exercise threshold vs time for

long times to maturity increases with the executive’s risk aversion, the stock’s unhedgeable risk

and the executive’s exposure to that risk, and also with the riskfree rate.

The dashed line in Figure 1 represents the optimal exercise threshold for this option not only

as a stand-alone option but also when it is part of any portfolio in which it will optimally be

the last option to be exercised. Once all the executive’s other stock options have been exercised,

the executive takes into account only the unhedgeable risk associated with the remaining, single

option, which will be eliminated on exercise, and exercises at the same threshold as for a stand-

alone option. (We characterize the portfolio combinations for which this is the case in more

detail soon.) More generally, when deciding when to exercise a particular option, the executive

takes into account the reduction in her exposure to unhedgeable risk which occurs upon exercise

and sale of the resulting shares. Since the effects of unhedgeable risk are related to the variance

of the unhedgeable risk exposure, they increase nonlinearly with the size of the option portfolio.

So the reduction in unhedgeable risk exposure on exercise of a given option is generally greater,

the larger the overall option portfolio. For example, exercising the first option in a portfolio

of two identical options reduces the executive’s exposure to unhedgeable risk by considerably

more than exercising the second (last) option. The lowest dot-dashed line in Figure 1 shows

the optimal exercise threshold for the first-to-be-exercised option in such a portfolio. As we see

in Figure 1, the executive prefers to unwind risk gradually over time by exercising options at

different thresholds, in agreement with Leung and Sircar (2009), Carpenter et al (2010) and

Grasselli and Henderson (2009). The greater impact of unhedgeable risk can be seen both in

the reduction in the threshold instantaneously before maturity (and hence the overall level of

the threshold) and in the larger cumulative effects for long times to maturity (the slope far from

maturity).

3.2 Which option is exercised first?

We have seen that under utility based valuation, the exercise order has a significant impact on the

level of the exercise threshold. But what determines the exercise order? In a Black-Scholes world,
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holding all else constant, options with lower strike price (or equivalently, greater moneyness) and

shorter times to maturity are exercised earlier. If these two effects work in the same direction,

so options in a portfolio have co-monotonic strike prices and times to maturity, then options

are exercised in order of increasing strike (Chapter 4 of Cox and Rubinstein (1985)). Henderson

et al (2012) have shown that this co-monotonicity result continues to hold under utility-based

pricing in incomplete markets21 i.e. for an executive with a portfolio of two options, Y and Z, if

KY ≤ KZ and TY ≤ TZ then it is always optimal for the executive to exercise Y before Z. Given

ESO’s are most often granted at-the-money, if there is a bull market, an executive will typically

have a portfolio of options where the more recent options have a higher strike price and a longer

time to expiry. In this situation we show it is always optimal to exercise the “older” options

first since they also have the lower strikes. However, if TY ≤ TZ but KZ (< KY ) is sufficiently

small, then it can be optimal never to exercise Y before Z. More generally, the optimal exercise

order can switch during the life of the shorter dated option. These situations will arise in a

bear market when portfolios will tend to have more recent options with a lower strike price but

longer time to expiry.

The left panel of Figure 2 shows the exercise thresholds for a portfolio of two options, Y and

Z, which are co-monotonic with KY = 10, TY = 5,KZ = 11, TZ = 10. The thresholds for option

Y are solid lines, whereas those for option Z are dashed. The top pair of lines represent the

Black-Scholes thresholds for options Y and Z. The lower pair of lines represent the thresholds

under utility-based valuation. Red lines represent thresholds at which the first option and blue

lines thresholds at which the second or last option in the portfolio is exercised. Since Z is always

exercised after Y , the dashed (blue) threshold at which option Z is exercised is equivalent to a

stand-alone threshold for Z. However, the solid (red) threshold for Y reflects the presence of

Z and is not equivalent to Y ’s stand-alone exercise threshold. In contrast, the Black Scholes

thresholds for each option do not change in the presence of other options in the portfolio and

thus are the same as stand-alone thresholds for each individual option.

The right panel of Figure 2 lowers the strike of Z to KZ = 4, so that the option strikes

and maturities are not co-monotonic. Now we see that under our model, it is never optimal to

exercise Y first. The dashed threshold for option Z is always lower than the solid (blue) threshold

for option Y . As in a Black-Scholes setting, the effects of differences in times to maturity are

21In fact American call options with co-monotonic strikes and maturities will be exercised in order of increasing

strike under very minimal assumptions on prices and preferences, see Henderson et al (2012) for details.
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more important when the options are closer to maturity,22 whereas for long times to maturity,

differences in time to maturity become relatively less important, so differences in strike prices

determine the exercise order. In this case, KZ is sufficiently low that the strikes determine the

exercise order for the whole life of the shorter dated option, so Z is always exercised first.23

For some strike/maturity combinations, the tradeoff between the strike/moneyness and the

time-to-maturity changes such that the exercise order switches from initially exercising the

option with a longer time to maturity first, say Z with lower strike, to exercising the shorter

dated option (with the higher strike price), Y say, first. We denote the switchover time by

T ∗ ∈ [0, TY ].
24 If KZ is sufficiently small, as above, that it is never optimal to exercise Y before

Z, then T ∗ = TY . Alternatively, if KY ≤ KZ so we are in the co-monotonic case, then T ∗ = 0.

Figure 3 shows the exercise thresholds for a portfolio of two options, Y and Z, which are

not co-monotonic and where the exercise order switches during the life of the option. Option Y

has a higher strike price but a shorter time to maturity than option Z: KY = 10 > 8 = KZ ,

TY = 5 < 10 = TZ . As before, the top pair of thresholds are the equivalent Black Scholes

thresholds which cross at T ∗
BS = 1.09. The optimal Black Scholes strategy is to exercise option

Z first if 0 ≤ t ≤ 1.09 and option Y first if 1.09 ≤ t ≤ 5 = TY . The optimal exercise order also

switches under utility-based valuation (the lower set of thresholds) from exercising Z first to

exercising Y first, though at a later time, T ∗ = 4.25. However, in contrast to the Black-Scholes

setting, where the switch in the exercise order has no impact on the location of either exercise

threshold, the difference in the level of each option’s exercise threshold depends on whether it is

exercised first or last (more generally, later) and results in a discontinuous jump in the optimal

exercise threshold for each individual option, SY and SZ , over the switching time, T ∗. SZ is

lower before T ∗, when Z is exercised first, i.e. before option Y , than afterwards, and so ‘jumps

up’ over the switching time as Z becomes the last to be exercised option. Correspondingly, Y ’s

22Exercise thresholds change rapidly with time to maturity when the time to maturity is short.
23In the Black Scholes world, we see the thresholds for Y and Z intersect close to the maturity of Y . Z

is exercised first before this intersection, then immediately prior to Y ’s maturity it is optimal to exercise Y

first. Again, however, the Black Scholes thresholds do not change in the presence of other options, and thus the

thresholds are the same as they would be for each option as a stand-alone.
24For a portfolio consisting of options Y and Z with TY ≤ TZ , the switchover time T ∗ is defined via:

T
∗ = inf{u ≤ TY : e−γ(1−ρ2)(Su−KY )+er(T̃−u)

H
Z(u, Su) ≤ e

−γ(1−ρ2)(Su−KZ)+er(T̃−u)

H
Y (u, Su)}
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threshold, SY ‘jumps down’ at T ∗ as Y becomes first to be exercised.25

Figure 3 also shows a dotted (green) line, which represents the threshold for option Y if

option Z is exercised before T ∗. Since the portfolio consists of only two options, this is the same

as the stand-alone threshold for Y . In order to explain the thresholds in more detail, we consider

various scenarios for stock prices, pictured in Figure 4. In the left-hand panel, both Path A and

Path B cross the lowest exercise threshold (for option Z) before T ∗, so option Z is exercised

first. The executive’s portfolio then consists just of option Y , which has exercise threshold as

for a stand-alone option, given by the combination of the solid (blue) line for t < T ∗ = 4.25 and

the (green) dotted line for T ∗ ≤ t < TY . Stock path A crosses this line so option Y is exercised,

whereas stock path B remains below it and option Y expires unexercised. In contrast, the stock

paths in the right-hand panel do not cross the lowest exercise threshold before T ∗. Between T ∗

and TY it is optimal to exercise Y first if the stock price crosses the lower solid (red) line. Stock

path A does, so option Y is exercised; stock price B does not, so option Y expires unexercised.

Once option Y has either expired or been exercised the executive’s portfolio consists solely of

option Z and is exercised only if (as is the case for both stock price paths) the stock price crosses

its stand-alone exercise threshold given by the dashed (blue) line before its maturity TZ . Thus

which exercise threshold is relevant for option Y between T ∗ and TY depends on the stock price

behavior before T ∗ (it is the dotted (green) line if Z has been exercised before T ∗, or the lower,

solid (red) line if not).

The exercise threshold for either one of the two options in this case exhibits significantly

different characteristics from those under Black-Scholes. Not only is the threshold no longer

monotonically increasing with time to maturity but strikingly, it exhibits a discontinuity when-

ever the exercise order changes.26

To summarize, for a portfolio of two options there are three possible forms of exercise strategy.

First, if the strike price of the longer-maturity option is sufficiently high relative to that of the

25More generally, at any switching time, any option whose order switches will have a discontinuity in its exercise

threshold. The threshold will be significantly higher after the switching time if the option becomes later in the

exercise order, and will decrease significantly if it becomes earlier in the exercise order
26For the relatively longer dated option, Z, the exercise threshold whilst it is the first-to-be-exercised option

increases as time to maturity decreases and, particularly close to the switchover time, at an increasing rate, so the

exercise threshold is convex in time to maturity. After the discontinuity in the threshold when the exercise order

switches, once the option has become the last-to-be-exercised, the threshold may still increase for long enough

times to maturity. The relatively shorter dated option, Y , can start as the last-to-be-exercised with a threshold

which may increase or decrease with time to maturity.
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shorter-maturity option (e.g. the strike prices and times to maturity are co-monotonic), then it

is always optimal to exercise in order of increasing time to maturity, i.e. exercise the shorter-

maturity option before the longer-maturity option as long as they are both alive, i.e. t < Tmin).

The longer-maturity option is thus exercised first only after the expiry of the shorter-maturity

option, i.e. T ∗ = 0. On the other hand, if the strike price of the longer-maturity option is

sufficiently low so that for example it is optimal to exercise it first even at the expiry of the

shorter-maturity option, then the strategy is to exercise in order of increasing strike price, i.e.

exercise the longer-maturity option before the shorter-maturity option at all times, even before

the shorter-maturity option expires. So T ∗ = Tmin. Finally, for intermediate values of the

strike price of the longer-maturity option relative to that of the shorter-maturity option, it is

initially optimal to exercise in order of increasing strike price, i.e. exercise the longer-maturity

option with lower strike price first, but the optimal exercise order switches before expiry of the

shorter-maturity option to exercising the longer maturity option last, so 0 < T ∗ < Tmin.

The combinations of strike price and maturity for which each strategy holds are illustrated

in stylized form in Figure 5. This illustrates the optimal strategy for a portfolio consisting of an

option with strike price K and maturity T together with our base-case option Y , with KY and

TY for different combinations of (K,T ). The form of the strategy depends on which region, A -

F, the strike price and maturity of the second option in the portfolio fall into relative to option

Y . The vertical and horizontal quadrant lines represent the boundaries of the co-monotonic

regions. So in the top right quadrant, B, Y is always exercised first and the later maturity

option is exercised last, as long as both options are still alive, i.e. T ∗ = 0. Similarly in the

bottom left quadrant E where K ≤ KY and T ≤ TY , whilst both options are still alive, the

earlier maturity option is exercised first and option Y is exercised last. The curved solid line

represents, for each maturity T , the maximum, if T > TY , (minimum if T < TY ) strike price for

which it is always optimal to exercise the option with the lower strike price first (even though

this has a longer time to maturity).

In the top left and bottom right quadrants the effects of strike prices and maturities pull in

opposite directions. In areas A and F the impact of the difference in strike prices dominates,

so in area A, option Y is always exercised before the shorter-maturity option due to Y ’s lower

strike price, and in F, option Y has higher strike price and is always exercised last. In these

areas, T ∗ = min(TY , T ). In areas C and D the strike price difference dominates initially, but

there is a switch in the optimal exercise order at 0 < T ∗ < Tmin so for times close to Tmin the
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differences in maturity times dominate.27

The overall effect is that in the darker shaded regions A and B the optimal strategy whilst

both options are still alive is to exercise Y first, whereas in the lighter shaded regions E and F

where there is a choice, it is optimal to exercise Y last. In regions C and D, which option it is

optimal to exercise first depends on when the stock price first crosses the threshold of whichever

is the first-to-be-exercised option. When the exercise order changes at T ∗, there is a jump in

the thresholds for each individual option. Only in the co-monotonic regions, B and E, are there

no jumps in either threshold.

Within each region, although the form of the exercise strategy remains the same, the threshold

for any option except the last-to-be-exercised varies with the composition of the remainder of

the executive’s portfolio. For example, Figure 6 shows the effect of different strike prices for

a longer dated option, Z, with TZ = 10, on the exercise threshold for a 5-year option Y with

KY = 10 when held together in a portfolio. The top, solid line is the threshold if Y is always

exercised last, which equals the stand-alone threshold. This is Y ’s threshold if KZ is sufficiently

low (any point in region F in Figure 5) and it is unaffected by changes in KZ . As KZ increases,

it becomes optimal to exercise Y first when it is sufficiently close to maturity (region D). For

example, for KZ = 8.5, the switchover time for these parameter values is T ∗ = 3.19, so before

then, Y is still exercised last and the threshold coincides with the top, stand-alone threshold;

however for T ∗ < t < TY , it is optimal to exercise Y first at a much lower threshold. As KZ

increases further to KZ = 9, there are two effects. Firstly, Y is optimally exercised first over

a longer period, so the switchover time, T ∗, decreases (to 1.39). Y ’s threshold is the lower,

first-to-be-exercised threshold for longer. Secondly, the first-to-be-exercised threshold itself is

slightly higher than when KZ = 8.5. This reflects the lower marginal reduction in unhedgeable

risk on Y ’s exercise due to Z’s lower moneyness. When KZ = 10, the options are co-monotonic

so it is always optimal to exercise Z first (Region B with T ∗ = 0). However the effect of Z’s

moneyness on Y ’s first-to-be-exercised threshold continues to hold. So Y ’s first-to-be-exercised

threshold for KZ = 10 is higher than that for KZ = 9 and that for KZ = 11 is higher still.

Thus far we have illustrated the forms of the exercise strategy and the resulting exercise

thresholds for particular parameter values. The potential forms of the exercise strategy, the

27Particularly for short times to maturity, the boundary between regions B/D and C/E i.e. the strike price

at which it is just optimal to exercise shorter-maturity option first for all remaining t < Tmin may differ from

the horizontal lines shown in the figure, so region B may extend below KY and region E may extend above KY .

Horizontal lines represent boundaries for all times.
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shape of the regions of relative strike prices and maturity dates, within which each strategy

applies, and the general shape of the exercise thresholds all remain unchanged when parameter

values are varied. Many of the new features in the shape and (lack of) continuity of the ex-

ercise thresholds vs time are due to the effect of the executive’s exposure to unhedgeable risk.

So changes in parameter values which increase the magnitude of the effect of this exposure to

unhedgeable risk increase the effects on the exercise thresholds. If the magnitude of the effect

increases, all exercise thresholds decrease because of the increased cost; however, due to dimin-

ishing returns to scale the exercise thresholds of the last-to-be-exercised options decrease more

than those of the second-to-last (first) to be exercised options, decreasing the magnitude of the

jump in the thresholds when the exercise order changes. More importantly, since the effect of

unhedgeable risk exposure increases with the length of time the unhedgeable risk must be borne,

the exercise thresholds for longer-maturity options decrease more then those of shorter matu-

rity options, both when last- and when first-to-be-exercised. Hence the switchover time, T ∗,

increases, so longer-maturity options are exercised first for a longer initial period. In unreported

simulations, these effects are found to hold consistently for increases in risk aversion, γ, and

in the risk-free rate, r, which increases the impact of the unhedgeable risk exposure over time.

Increases in the dividend yield, q, have similar effects, since exercise thresholds decrease due to

the increased foregone dividend yield, though less markedly since the increase in this effect over

time is less pronounced.

3.3 Implications

Exercise thresholds are important because they are observable: the exercise of an ESO reveals

one point of the empirical exercise threshold of the first option to be exercised from the exec-

utive’s ESO portfolio. This is usually described in terms of the relative moneyness on exercise

or Sπ/K. So what are the implications of our model for the relative moneyness on exercise

(hereafter moneyness) of ESOs held in portfolios, specifically the first-to-be-exercised money-

ness which is observed in practice?

Most implications follow directly from the equivalent results for exercise thresholds them-

selves. So for example, for any option in a portfolio (as long as it is not exercised last), the

moneyness on exercise is lower than the moneyness on exercise for the same option held as a

stand-alone. A particular ESO’s, say Y ’s, moneyness on exercise decreases if the executive is

granted additional options optimally exercised after Y . It also varies with the terms (K,T ) of
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other options in the executive’s portfolio after it in the optimal exercise order.

Like the threshold itself, the moneyness on exercise of the first-to-be-exercised ESO is gener-

ally non-monotonic with respect to time to maturity, first increasing, potentially at an increasing

rate, and then decreasing as time gets closer to the maturity of the each option in the portfolio.

It jumps when the identity of the first-to-be-exercised option changes during the portfolio’s life:

generally jumping up on exercise or expiry of the first-to-be-exercised ESO and jumping down

if there is additionally a switch in the optimal exercise order whilst the portfolio composition

remains unchanged.28 For example, the portfolio of Y and Z in Figure 3 with KY = 10, TY = 5

and KZ = 8, TZ = 10 has switching time, T ∗ = 4.25. Z is exercised first before T ∗, Y after-

wards. At T ∗ the exercise threshold of the first-to-be-exercised option, at which the executive

is indifferent between exercising Y first or Z first, is 12.49. The relative moneyness on exercise

of the first option to be exercised thus drops from 12.49/KZ = 1.56 for exercising Z just before

the switchover to 12.49/KY = 1.25 for exercising Y just afterwards.

The non-monotonicity and jumps in the relative moneyness on exercise of the first-to-be-

exercised ESO in a portfolio makes it difficult to draw empirical predictions about the determi-

nants of observed moneyness on exercise which hold in all circumstances. However, empirical

studies of ESO exercise in practice often work with exercise rates or propensity to exercise, and

we show how our model can be used to explain empirical exercise patterns around new option

grants (Section 3.3.1) and other empirical findings on exercise rates (Section 3.3.2).

3.3.1 Immediate exercise of existing options: the impact of a new grant

Several empirical studies have found a relation between the executive’s propensity to exercise

existing options and the arrival of a new grant of options. Specifically, Ofek & Yermack (2000)

find that executives with larger exposure to firm-specific risk (larger portfolios of stocks and op-

tions) were more likely to exercise some existing options after new option grants than executives

with lower prior exposure. Similarly, Klein & Maug (2010) also find that new option grants

increase executives’ propensity to exercise, and Srivastava (2011) finds that existing options’

time to maturity on exercise increases with the size of new option grants.

Under a Black Scholes framework, a new grant does not alter the thresholds of the existing

options, and thus cannot alter the likelihood that any existing options will be exercised. In

28Recall that after the switch, the option exercised first will have a shorter time to maturity and higher strike

price.
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contrast, the increase in unhedgeable risk brought to the portfolio by the new grant means

that it may be optimal to immediately exercise the existing option in our setting. Indeed, as

we demonstrate, the decrease in the relative moneyness required to trigger immediate exercise

once executives’ risk-aversion and portfolio effects are taken into consideration is consistent with

these results.

Consider an executive with an existing option Y who receives a new option grant Z. If KZ

is sufficiently high that it is optimal to exercise Y first as soon as the new option, Z, is granted,

Y ’s threshold once the new option has been added to the portfolio will be much lower than its

threshold in the absence of the new option. New options are often granted at-the-money. So if

option Y is sufficiently in-the-money, then an unexpected new at-the-money option grant may

induce Y ’s immediate exercise. The level of moneyness required for exercise once Y is part of

the new, larger portfolio will be much lower than that required for Y as a stand-alone option.

For example, consider option Y with KY = 10, TY = 5. For parameters given by γ = 0.1, r =

0.05, q = 0.02, η = 0.4, Y is exercised immediately under a Black Scholes framework if the stock

exceeds 48.8, or equivalently, Y ’s relative moneyness S/KY exceeds 4.88. The equivalent stand-

alone threshold for Y in moneyness terms is 1.65. (This takes into account only the unhedgeable

risk associated with option Y itself.) Now consider receiving another option Z with TZ = 10.

The presence of Z in the portfolio dramatically lowers Y ’s moneyness threshold such that Y is

exercised immediately if S/KY > 1.39. Hence the probability of immediate exercise of existing

options at the date of a new option grant is higher once risk-aversion and unhedgeable risk with

portfolio effects are taken into account. Factors that increase unhedgeable risk will reduce Y ’s

moneyness threshold and raise the likelihood that the existing option is exercised immediately

at the grant date of the new option.

3.3.2 Empirical literature on ESO exercise rates

A number of papers have investigated exercise thresholds and rates for ESOs. For example

Carpenter, Stanton & Wallace (2012) recognize the complexity of stock option portfolios in

practice in the methodology they use but do not include specific controls for the composition

of the remainder of the portfolio. Only Klein & Maug (2010) and Armstrong et al (2007)

test explicitly for portfolio effects. They find strong evidence of the explanatory importance of

portfolio effects. Klein & Maug (2010) find that most of the options exercised have a time value
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which is lowest or close to lowest of all options in the executive’s portfolio 29 and Armstrong

et al (2007) find relationships between the exercise rate of a particular option and the intrinsic

values of other options in an executive’s portfolio. Both are consistent with the portfolio effects

we describe.

Armstrong et al (2007) show that the exercise rate of a particular option, say option Y , is

decreasing in the overall intrinsic value of the executive’s other option grants, if this is positive,

and is also decreasing in the absolute value of this intrinsic value if the intrinsic value is negative.

Although seemingly inconsistent, both of these results can be explained using our model. To

illustrate the main effects, we approximate the remainder of the option portfolio by a holding

with common strike price and time to maturity. First, if the intrinsic value of the executive’s

other options is negative, they are out-of-the-money, and so are most likely to be exercised

after Y . Increasing the strike price of the executive’s other options increases the magnitude

of the other options’ (negative) intrinsic value. This decreases the unhedgeable risk associated

with these other options and therefore also decreases the reduction in the unhedgeable risk

on exercising Y . This leads to an increase in Y ’s optimal exercise threshold or equivalently a

decrease in Y ’s exercise rate, as in Armstrong et al (2007). In the other case when the intrinsic

value of the executive’s other options is positive, Y may be exercised before or after the other

options. The primary effect is that a decrease in the strike price of the other options, which

increases their intrinsic value, can lead to a change in the optimal exercise order, so Y is exercised

first before the change in the strike price but is exercised later (last) afterwards. We show that

the optimal exercise threshold for an option jumps up when it moves to a later position in the

exercise order, due to the sudden decrease in the change in unhedgeable risk arising from the

exercise of this particular option. This is equivalent to a decrease in the option’s exercise rate,

as found by Armstrong et al (2007).30

29They calculate the time value using Black-Scholes world values, so the optimal exercise ordering may some-

times differ from the ordering of the Black-Scholes world time values on exercise. However in many cases (e.g.

co-monotonic) the two will coincide, so this is broadly consistent with our model.
30Whilst the change in K can increase an option’s exercise rate if Y is exercised first both before and after the

change in strike price, using a similar argument to the case of negative intrinsic value, the magnitude of this effect

is much smaller, since the change in the exercise threshold is incremental rather than a discontinuous jump. The

number of portfolios to which it applies is also small, since it is limited by the requirement that the intrinsic value

remain positive.
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4 Shareholder Costs

Shareholders do not face the same restrictions on trading as executives, so they value them in

a perfect market setting (Black-Scholes world), but taking account of the executive’s optimal

exercise threshold (See Carpenter (1998), Carpenter, Stanton &Wallace (2010) amongst others).

The cost of each option, Cπ(t, s), is calculated using the Black-Scholes equation whilst the stock

price remains below the optimal exercise threshold, Sπ. 31 The portfolio cost, CΠ(t, s), is given

as the sum of the individual option costs, Cπ.32

4.1 Portfolio effects: Discount relative to Black-Scholes costs

Decreases in the executive’s optimal exercise thresholds due to the presence of other options in

her portfolio automatically decrease the cost of those options to the shareholders. So the cost

of any option when held in a portfolio is generally lower than its cost as a stand-alone. The

only exception is if the option is optimally exercised last throughout its remaining life (when

the cost is unaffected by the presence of other options in the portfolio). As a consequence,

the overall shareholder cost of any portfolio of options is lower than the sum of the costs of

each option evaluated on a stand-alone basis, since all bar at most one of the options making

up the portfolio are exercised earlier and thus have lower individual costs. It is well known

that the costs of individual ESOs are lower than their equivalent perfect market (Black Scholes

world) values due to the executive’s optimal early exercise in the presence of unhedgeable risk

(Carpenter, Stanton & Wallace (2010) or Leung & Sircar (2009)). Portfolio effects increase the

magnitude of this reduction: a greater discount is required from the Black-Scholes world cost to

obtain the shareholder costs of ESO portfolios for a given level of executive risk aversion.33

For example, consider a five year at-the-money ESO Y on a stock with current stock price

S = 10, dividend yield q = 5% and (unhedgeable) volatility η = 40%, exercisable at any time

before its maturity, with risk-free rate r = 10%. The Black-Scholes world value of this grant is

3.48. For a stand-alone ESO grant, taking into account the executive’s risk-aversion, γ = 0.2,

reduces Y ’s cost by 47% to 1.85. However, if the executive owning Y also owns a second option,

Z, which is also vested and has the same strike price but with 10 years to maturity, then the

31The p.d.e. and boundary conditions for Cπ(t, s) are given in the Appendix.
32For example, CY,Z is the cost of the portfolio of options Y and Z, CY is cost of Y when considered as part of

the portfolio, CZ is the cost of Z as part of the portfolio. The costs can also be calculated for individual options

on a stand-alone basis, denoted for e.g. CY
S by replacing the threshold SY with the stand-alone threshold SY

S .
33Equivalently, a lower level of risk aversion is required to achieve the same discount.
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cost of Y decreases further to 1.04, a 70% reduction relative to the original Black-Scholes world

value. The cost of the ESO portfolio, 3.12, (the sum of the portfolio costs), is also less than

the sum of the costs of each ESO as stand-alone options, 3.93, again increasing the proportional

discount relative to Black-Scholes world values (from 49% to 60%).34

These proportional discounts can be significant in magnitude. Table 1 shows how they vary

with the executive’s risk aversion, γ, and the firm’s idiosyncratic volatility, ηe and dividend

yield, q, through r − q. Proportional discounts increase, the greater the portfolio effect on the

exercise threshold, i.e. the greater the unhedgeable risk (η), the greater the cost of that risk

to the executive (measured by the risk aversion, γ) and the greater the potential reduction

in threshold (the higher the original threshold), so the lower the dividend yield, q (the higher

r − q). Overall, portfolio effects increase discounts for the costs of ESOs relative to Black-

Scholes values, even for low levels of risk aversion (for γ = 0.01, the discount for individual

options almost quadruples from 3% to 11%, and the discount for the portfolio almost doubles

from 4% to 7%). The presence of one single other option in a portfolio can decrease the cost of

an individual ESO to the shareholders to less than a quarter of its Black-Scholes world value,

and the cost of a portfolio of two options can be less than one third of its Black-Scholes world

value.

This means that any approximate method for estimating the costs of ESOs which does not

adjust for portfolio effects (e.g. using the Black-Scholes formula with a fixed maturity adjust-

ment), even if it gives reasonable values for a stand-alone option, can lose significant accuracy

if used to value the same option held in a portfolio.

4.2 Portfolio composition: Moneyness effects

In the above example, the two options were co-monotonic, so portfolio effects reduced the cost

of the shorter dated option, Y , leaving the cost of the longer-dated option unchanged. However,

we saw in Section 3 that more generally the exercise order depends on the relative strike prices

and times to maturity and can change during the portfolio’s life. This means the cost to the

shareholders of an individual option grant to a particular executive depends on the composition

of the remainder of that executive’s portfolio.

34Since the options are co-monotonic, the earlier maturity option, Y is always exercised first, so the cost (in

the portfolio) of the ten year option is unaffected in this case.
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CY
S /CY

BS CY /CY
BS CZ/CZ

BS (CY
S + CZ

S )/(C
Y
BS + CZ

BS) CY,Z/(CY
BS + CZ

BS)

γ 0 1 1 1 1 1

0.01 0.97 0.89 0.96 0.96 0.93

0.1 0.68 0.45 0.65 0.66 0.56

0.2 0.53 0.30 0.49 0.51 0.40

ηe 0.2 0.68 0.43 0.66 0.67 0.56

0.4 0.53 0.30 0.49 0.51 0.40

0.6 0.43 0.23 0.40 0.41 0.32

r − q 0 0.61 0.36 0.58 0.59 0.48

0.03 0.56 0.32 0.53 0.55 0.44

0.05 0.53 0.30 0.49 0.51 0.40

Table 1: The ratio of option cost as a proportion of the corresponding Black-Scholes world cost

for (i) Y as a stand-alone, (ii) Y in the portfolio with Z, (iii) Z in a portfolio with Y (= Z as

stand-alone), (iv) the sum of Y and Z on a stand-alone basis and (v) the portfolio of Y and

Z. Option Y has KY = 10, TY = 5, option Z has KZ = 10 and TZ = 10. Parameters unless

otherwise stated are: S = 10, r = 0.10, r − q = 0.05, η = 0.4, ρ = 0, γ = 0.2.
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Consider a portfolio of our five-year at-the-money ESO Y combined with a ten-year option,

Z, as before, but now allow Z’s strike price to vary. We saw in Section 3 (Figure 6) that if KZ

is sufficiently small, Y ’s exercise threshold is unaffected, since Z is exercised first and Y last,

but that as KZ increases, it becomes optimal for the executive to exercise Y first, at a lower

threshold than the stand-alone one, when Y is sufficiently close to maturity. As KZ increases

further both the length of time when Y is exercised first and also Y ’s exercise threshold whilst

it is exercised first increase. This translates directly into an effect on Y ’s cost, which is shown

as a function of KZ in the top left graph in Figure 7. The other graphs in Figure 7 show how

the optimal switchover time T ∗ (top right-hand graph) and cost of option Z (bottom graph)

vary with KZ .

The horizontal dotted line in the top left graph represents Y ’s cost as a stand-alone option.

This stand-alone cost is an upper bound on the cost of Y when it is part of a portfolio with Z,

which is shown by the lower, solid line. The two costs coincide for low KZ , when Y is exercised

last (so T ∗ in the top right graph is TY ). Once KZ is sufficiently high that it becomes optimal to

switch to exercising Y first close to Y ’s maturity, increasing KZ decreases the switchover time

T ∗. It also decreases the cost of Y because the decrease in Y ’s cost due to the longer period

that Y is exercised at its much lower, first-to-be-exercised threshold dominates the effect of the

increase in the first-to-be-exercised threshold itself. For higher KZ ,
35 once Y is always exercised

first, only the second effect, due to the decrease in unhedgeable risk eliminated on exercise,

remains, so Y ’s cost increases gradually with KZ .
36 So the cost of one option in the portfolio,

Y , varies non-monotonically with the strike price of the other option in the executive’s portfolio.

This is in stark contrast to a Black-Scholes world, where option values are independent of the

portfolio in which they are held.

Portfolio effects also change how the cost of an option varies with its own strike price. In a

Black-Scholes world, options are monotonically decreasing in their own strike price, ∂CBS

∂K < 0,

and this continues to hold for stand-alone options in a utility-based setting as shown by the top

dashed line in the bottom graph in Figure 7. However, when Z is held as part of a portfolio this

35Strictly, it is always optimal to exercise the shorter-dated option first only when the options are co-monotonic,

i.e. for KZ ≥ KY if TZ ≥ TY . However the co-monotonicity is a necessary condition only for this to be true for

all possible times to maturity. In practice when the shortest time to maturity is small, if KZ is slightly below

KY the switchover time occurs long before TY and has thus effectively already occurred, so T ∗ = 0 for KZ ≥ K∗
Z

where K∗
Z < KY varies with TY . In the example, K∗

Z = 9.23 < 10 = KY

36In the limit as KZ → ∞, there is no additional risk and CY → CY
S .
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is no longer necessarily true: its cost as a function of its own strike price is given by the solid

line, which has a local minimum close to the strike price of the other option in the portfolio.

The graph can be split into four regions. Firstly, for KZ sufficiently lower than the current

asset price S = 10, it is optimal for the executive to exercise Z immediately, so the option cost

equals its payoff. This is the case whether it is held alone or as part of a portfolio. However,

immediate exercise is optimal for higher values of KZ (up to KZ = 6.95 in this case) when

the option is held as part of a portfolio, due to the executive’s lower valuation of the portfolio

before exercise because of the larger associated unhedgeable risk. Secondly, for higher KZ , it

may in principle still be optimal to exercise Z before Y , though the optimal threshold is greater

than the current stock price SZ > S = 10. The cost of Z thus reflects its lower threshold

as the first-to-be-exercised option; this decreases as KZ increases due to standard decreasing

moneyness considerations. Thirdly, as KZ increases further, at some point it becomes optimal

to switch to exercising Y first close to its maturity. This generates an additional effect when KZ

increases: the decrease in switchover time T ∗ increases the length of time Z is exercised last, at

a higher theshold, which increases Z’s cost. Eventually this dominates so the cost of Z has a

local minimum before rising to equal its cost as a stand-alone (the fourth region when T ∗ = 0,

for KZ ≥ 9.23).

Finally, since the cost of the whole portfolio of ESOs granted to an individual executive is

the sum of the cost of each option, evaluated as part of the portfolio: CY,Z = CY + CZ , the

portfolio cost also varies non-monotonically with the strike prices of its constituent options.

4.3 Discounts arising from portfolio composition

The presence of other options in the executive’s portfolio reduces the cost of each individual

option grant in the portfolio (as long as it does not remain the last to be exercised over the whole

of its life). It is thus valued at a discount relative to its stand-alone cost, simply because it is

part of a portfolio. Moreover the discount varies with the strike prices and times to maturity

of the other options in the executive’s portfolio.37 The “portfolio proportional discount” or

proportional reduction in cost relative to the stand-alone cost due to portfolio effects can be

measured as 1−RΠ whereRΠ = CΠ/(
∑

i C
πi
S ) is the cost evaluated as a portfolio as a proportion

37Figure 7 shows the effects of varying the strike price of a longer-dated option. Similar effects are found varying

the strike price of a shorter-dated option. Details available from the authors on request.
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Panel A: γ = 0.2, η = 0.4, ρ = 0, r = 0.1, r − q = 0.05

TZ KZ = 8 KZ = 9 KZ = 10 KZ = 11

RY RZ RY,Z RY RZ RY,Z RY RZ RY,Z RY RZ RY,Z

6 1.000 0.862 0.923 1.000 0.631 0.804 0.557 1.000 0.782 0.620 1.000 0.810

10 1.000 0.822 0.899 0.997 0.632 0.797 0.565 1.000 0.795 0.620 1.000 0.820

15 1.000 0.798 0.884 0.994 0.636 0.795 0.571 1.000 0.803 0.630 1.000 0.820

Panel B: γ = 0.1, η = 0.4, ρ = 0, r = 0.1, r − q = 0.05

TZ KZ = 8 KZ = 9 KZ = 10 KZ = 11

RY RZ RY,Z RY RZ RY,Z RY RZ RY,Z RY RZ RY,Z

6 1.000 0.733 0.851 0.999 0.689 0.884 0.640 1.000 0.830 0.690 1.000 0.840

10 0.999 0.732 0.847 0.987 0.695 0.826 0.650 1.000 0.840 0.690 1.000 0.850

15 0.997 0.733 0.845 0.976 0.704 0.823 0.660 1.000 0.850 0.700 1.000 0.860

Panel C: γ = 0.2, η = 0.6, ρ = 0, r = 0.1, r − q = 0.05

TZ KZ = 8 KZ = 9 KZ = 10 KZ = 11

RY RZ RY,Z RY RZ RY,Z RY RZ RY,Z RY RZ RY,Z

6 1.000 0.834 0.910 1.000 0.602 0.792 0.527 1.000 0.766 0.593 1.000 0.791

10 1.000 0.809 0.895 0.999 0.605 0.789 0.535 1.000 0.776 0.596 1.000 0.799

15 1.000 0.799 0.889 0.998 0.607 0.788 0.536 1.000 0.779 0.596 1.000 0.802

Panel D: γ = 0.2, η = 0.4, ρ = 0, r = 0.05, r − q = 0.05

TZ KZ = 8 KZ = 9 KZ = 10 KZ = 11

RY RZ RY,Z RY RZ RY,Z RY RZ RY,Z RY RZ RY,Z

6 1.000 0.710 0.840 0.998 0.669 0.823 0.630 1.000 0.810 0.666 1.000 0.831

10 0.998 0.711 0.833 0.980 0.678 0.811 0.640 1.000 0.830 0.671 1.000 0.845

15 0.995 0.711 0.829 0.948 0.696 0.803 0.640 1.000 0.840 0.675 1.000 0.855

Panel E: γ = 0.2, η = 0.4, ρ = 0, r = 0.1, r − q = 0.03

TZ KZ = 8 KZ = 9 KZ = 10 KZ = 11

RY RZ RY,Z RY RZ RY,Z RY RZ RY,Z RY RZ RY,Z

6 1.000 0.900 0.944 1.000 0.640 0.809 0.570 1.000 0.790 0.640 1.000 0.810

10 1.000 0.866 0.923 0.998 0.648 0.806 0.580 1.000 0.800 0.640 1.000 0.820

15 1.000 0.848 0.912 0.997 0.654 0.806 0.580 1.000 0.810 0.640 1.000 0.830

Table 2: The ratio of the option cost calculated on a portfolio basis to the (sum of the) stand-alone

cost(s): RY = CY /CY
S
, RZ = CZ/CZ

S
in italics and RY,Z = CY,Z/(CY

S
+ CZ

S
) in bold. Option Y has

KY = 10, TY = 5. The Table varies KZ and TZ . Parameters unless otherwise stated are: S = 10,

r = 0.10, r − q = 0.05, η = 0.4, ρ = 0, γ = 0.2.
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of the (sum of) stand-alone cost(s). For a portfolio of two or more unexercised options this is

always non-zero, i.e. RΠ < 1.38

The bottom right graph in Figure 7 plots RY,Z vs KZ for our two option portfolio of Y with

longer dated Z. The discount for the portfolio as a whole arises from option Z when KZ is

sufficiently low, from option Y when KZ is high (e.g. KZ > KY ), and from both options when

KZ is slightly lower than KY (in the switching region D from Figure 5). The proportional

discount for the portfolio as a whole reaches a maximum value (of over 19%) for some KZ in

the switching region, D, but remains above 10% for a wide range of KZ .
39

Table 2 shows, for each option, Y and Z, and for the portfolio as a whole, Y +Z, the portfolio

cost as a proportion of the (sum of) stand-alone cost(s), RY ≡ CY /CY
S etc., for different strike

prices and maturities KZ and TZ . Panel A considers the same parameter values as in the

earlier example; panels B - E show the effect of varying each key parameter (the executive’s risk

aversion, γ, the stock’s (unhedgeable) risk, η, the risk-free rate, r and the stock’s dividend yield,

via r − q. For each combination of (KZ , TZ), either it is always optimal to exercise the shorter-

dated option, Y , first, so RY < 1 and RZ = 1, or always optimal to exercise the longer dated

option, Z, first so RY = 1, RZ < 1, or the optimal exercise order changes, so both RY ,RZ < 1.

In the Table, since TZ > TY , these possibilities correspond to regions B, F and D in Figure 5.

For low KZ it is optimal for the executive to exercise Z immediately, so the cost of Z as part

of the portfolio equals its payoff on exercise. If Z’s optimal exercise threshold on a stand-alone

basis is higher than the current stock price, S0, then the portfolio discount is entirely due to the

time value of Z’s cost as a stand-alone option. This increases as KZ , and hence the difference

between Z’s stand-alone threshold and S0 increases. Alternatively, if KZ is sufficiently high that

the portfolio discount is entirely due to Y ’s lower threshold as the first-to-be-exercised option,

then increases in KZ reduce Z’s moneyness and hence reduce the marginal unhedgeable risk on

exercise of Y , reducing the discount.40 For KZ in the intermediate region where it is initially

optimal to exercise Z first, but not immediately, and the optimal exercise order may change

during the options’ lives, a number of effects arise when KZ increases. The increase in the

38At any time all but one of the options in a portfolio are exercised at lower thresholds and thus have lower

costs than if held as stand-alone options.
39RΠ = 1 only for low KZ where Z is so far in-the-money (recall S = 10) that it is optimal to exercise Z

immediately.
40This dominates over the additional effect of the increased weight of Y in the portfolio due to the reduction

in Z’s moneyness and hence cost.
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marginal unhedgeable risk reduction on exercise of the first-to-be-exercised option continues to

reduce the portfolio discount, but the increase in KZ also changes both the length of time for

which Y is exercised first and the relative weights of Y and Z in the portfolio. Which effect

dominates depends on the parameter values. Overall the proportional discount for the portfolio

as a whole is maximized within this region where the options are non co-monotonic and initially

the longer dated option is exercised first. Moreover, the further away (in (K,T ) space) from

the switching region, (e.g. higher KZ > KY or lower KZ ≪ KY ), the lower the proportional

discount.

The Table shows that portfolio effects can reduce shareholder costs for the portfolio as a

whole by more than 20% relative to the costs of the options as stand-alones, and by over 40%

for individual options. Moreover, the proportional discount remains significant for a wide range

of portfolios (K’s and T ’s) and parameter values. The portfolio proportional discount is larger for

firms with more risk-averse executives, with high idiosyncratic volatility and low dividend yield,

and when the risk-free rate is high, and for executives with portfolios where earlier-maturity

options have higher strike prices41.

Firms should thus recognize that evaluating the cost of each ESO individually overstates

the total cost to the shareholders of a portfolio of options granted to the same executive. The

inherent non-linearity induced by portfolio considerations means the cost of an ESO portfolio

needs to be calculated as a whole. Moreover, the costs of individual ESOs depend on the portfolio

they are a part of, and so may change if the composition of the executive’s portfolio changes.

This raises the question of how a firm should evaluate the cost of a new option grant.

4.4 Incremental cost of new options

If the executive receives an additional option grant, portfolio size and total unhedgeable risk

increase. The overall portfolio cost increases, but the discount relative to the sum of the stand-

alone costs also increases. Consider the effect of an unanticipated new grant of an option, Z,

to an executive with an existing portfolio of options (consisting of option Y ). Before option Z

is granted, the cost to the shareholders of the executive’s portfolio would be given by CY
S , the

cost of option Y as a stand-alone. After option Z is granted, the cost of the portfolio would be

CY + CZ , where both costs take into account the presence of the other option in the portfolio.

41So the optimal exercise order changes and both options will optimally be exercised first in different time

periods.
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Thus the incremental cost of the new grant to the shareholders is Cmarginal
Z|Y ≡ CY + CZ − CY

S .

This is plotted in Figure 8 for different strike prices for the newly granted option, KZ , assuming

option Y is currently at-the-money. Since CY and CZ vary non-monotonically with respect

to KZ , as shown in Figure 7, the incremental cost of option Z also depends on KZ in a more

complex way than would be expected in a Black-Scholes world. In particular, it is no longer

monotonically decreasing with respect to KZ : there is a local minimum incremental cost at a

strike price slightly smaller than KY . Equivalently, the local minimum incremental cost for the

new option occurs if the option is granted slightly in-the-money, and the incremental cost of the

new option is less sensitive to changes in its strike price when it is granted close to the money.

The left-hand graph in Figure 9 shows RΠ or (1 - “portfolio proportional discount”) for the

incremental cost of Z vs KZ assuming option Y is at-the-money. Note as long as it is optimal

to hold both options, the proportional discount is non-zero. It has a similar shape to the graph

for the portfolio as a whole, but at a lower level.42 The maximum proportional discount occurs

if the new option is granted slightly in-the-money and remains above 20% for most choices of

strike price and time to maturity.

It is common for firms to grant all ESOs at-the-money with the same time to maturity (10

years)(Carpenter et al (2012)). The right-hand graph in Figure 9 shows how RΠ and hence the

portfolio proportional discount varies with the stock price for an incremental option granted at-

the-money with 10 years to maturity to an executive who already holds an ESO with strike price

10 and five years to maturity. The proportional discount is also non-monotonic with respect to

KZ . It is non-zero as long as it is not optimal to exercise the existing option, Y , immediately,

and over 10% for stock prices at least 30% in- and out-of-the-money for the existing option, Y .

So firms also need to recognize that the cost of the same option grant to otherwise identical

executives, with in particular the same level of risk aversion, will not be the same if the portfolio

of other options they hold differs. The magnitude of the portfolio proportional discounts suggest

any approximate method for evaluating the cost of ESOs needs to be flexible enough to take

these portfolio considerations into account. Increasing the size of the existing portfolio (adding

options) will decrease the cost of making a new option grant to the executive. So the cost to the

shareholders of an option grant to an executive is highest when the executive has no outstanding

42This is unsurprising since both incorporate the reductions in cost of all options in the portfolio due to the

additional option grant in the numerator but the denominator is smaller for the individual option than for the

portfolio as a whole.
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unexercised ESOs.

5 Robustness

5.1 Larger portfolios

Up to this point, we have only considered in detail portfolios consisting of two options. As

the number of options increases, the complexity of the numerical solution increases significantly

because of the number of potential exercise combinations which need to be considered, thus

we leave detailed investigation of optimal exercise strategies for larger portfolios for further

work. However, many of the results for the two-option case will carry over to larger portfolios,

potentially with even greater effects. This is because of the common underlying cause of the

results, that the effect of unhedgeable risk increases non-linearly with portfolio size. This implies

that thresholds for a given option when it is (n+1)st-to-last to be exercised are distinctly lower

than the threshold for the same option when one option is removed from the remainder of

the portfolio, so it is the nth-to-last to be exercised, because the decrease in unhedgeable risk

associated with the option exercise is greater, the larger the remaining portfolio. This means

that the threshold at which an executive exercises her first option decreases when further options

are added to her portfolio.4344

Exercise thresholds for a particular option in the larger portfolio can exhibit the same char-

acteristics as in the two-option case: the threshold can increase, even at an increasing rate, as

time-to-maturity decreases, and will jump if its position in the optimal exercise order changes.

However the jumps no longer affect all options in the portfolio: the exercise threshold for options

not involved in a particular switch in the exercise order remain continuous across the switch-

ing date. An example of exercise thresholds for a portfolio of three options is given in Figure

10. Depending on the combinations of strike prices and maturity dates, there can be multiple

switches in the exercise order and jumps in exercise thresholds. For portfolios with co-monotonic

strike prices and maturities, there are still no jumps and the exercise order remains unchanged

43If the new option is the first-to-be-exercised, its threshold is automatically lower than the lowest threshold of

the existing options. If at some time it is not the first-to-be-exercised, thresholds for all options exercised before

it, including the first-to-be-exercised, are reduced since the portfolio remaining after their exercise now includes

the new option.
44We know for a single grant of identical options, as the number of options becomes infinite, the individual

exercise thresholds will limit to the option strike K, see Henderson and Hobson (2011).
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throughout the portfolio’s life.

In general the exercise order depends on the relationship between the strike prices and ma-

turities of options in the portfolio. Holding all else equal, options with higher strike prices and

longer times to maturity are exercised later; where these effects conflict, differences in strike

price are more likely to dominate when all the times to maturity are long but an option with a

higher strike price but shorter maturity can be exercised out of strike-price order when its time

to maturity is short since its thresholds decrease rapidly as its time-to-maturity decreases to

zero.

These effects carry through to shareholder costs. At most one option in a portfolio has

the same cost as its stand-alone cost (if it is always last-to-be-exercised); costs for all other

options are lower because they are no longer exercised at their stand-alone, equivalently last-

to-be-exercised thresholds. Moreover, the cost of each option in a portfolio is affected by its

relationship with the strike prices and maturities of all the other options in the portfolio. As a

function of its strike price, the shareholder cost of a new option can have multiple local minima.45

Costs of all existing options will also depend non-linearly on the strike price of the new option,

generally with a similar shape to the graph in the two-option case (the top left graph in Figure

7). Hence the incremental cost to the shareholders of a new option grant will also be non-linear

with potentially multiple local minima.

When an option portfolio’s size is increased by the addition of an option, the cost of the

overall portfolio to the shareholders will increase, but by much less than the stand-alone cost

of the new option. The proportional portfolio discount for new options, or equivalently the

difference between the incremental cost of a new option taking account of portfolio effects and

its cost as a stand-alone will increase.46

45If it has a sufficiently low strike price, the new option will be exercised first, say (n+1)st to last. However, as

its strike price increases, its position in the exercise order changes to nth-to-last, (n−1)st-to-last, etc.. Eventually,

for high enough strike prices, it becomes the last to be exercised. The exercise threshold and shareholder cost of

an option exercised later in the exercise order increases, because of the lower level of unhedgeable risk associated

with the exercise decision. However the cost of an option with a given place in the exercise order decreases with its

strike price. Together this may lead to a local minimum for each switch in the exercise order, as in the two-option

case.
46On the addition of an option to an existing portfolio, the costs of options in the existing portfolio which will

now be exercised after the new option are unaffected by its presence; however any options now exercised before

the new option at any time will have a lower cost. If the existing portfolio increases in size and, when added, the

new option is still exercised last, its threshold and hence cost will be lower. If it is not exercised last in the larger
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Overall then, portfolio effects on both exercise thresholds and costs increase when options

are added to an ESO portfolio, but the nature of the effects remains broadly the same as in the

two option case we considered in detail in Sections 3 and 4.

5.2 Vesting, employment risk and performance-based compensation

We finish by discussing several issues concerning the robustness of our results to inclusion of

vesting, employment risk, and performance-based compensation.

In practice, ESOs commonly have vesting restrictions in order to tie the executive to the

company and provide incentives.47 Very few of the works taking unhedgeble risks into account

also consider the impact of time-vesting48 however, Leung and Sircar (2009) find shareholder

costs increase with the vesting period. In our framework, vesting restrictions would not alter the

optimal exercise ordering once the options had vested, and it would not change the thresholds

at all if the options vested at the same time.49

Executives may be forced to exercise or forfeit options if their employment is terminated.

Leung and Sircar (2009) and Carpenter et al (2010) consider exogenous job termination risk and

find it reduces the exercise threshold and shareholder costs. We do not include job termination

risk in our setting as it would not alter the ordering of exercise of options within a portfolio.

50 Importantly, its effect would be in the same direction as the impact of portfolio effects from

unhedgeable risk and thus inclusion of employment risk would reduce shareholder costs further.

Although our focus has been on portfolios of standard ESOs, many of our conclusions will

be relevant also for performance-based compensation where there are additional performance-

vesting or payout conditions based on stock price, accounting performance or industry compar-

isons (see Bettis et al (2010), Johnson and Tian (2000)).

combined portfolio, then at least one option in the portfolio is exercised at a lower threshold than it would be in

the combined portfolio before the increase in size, lowering the incremental cost.
47See Kole (1997) for a comprehensive analysis.
48Carpenter et al (2010) incorporate vesting into their shareholder costs (but not their analysis of exercise

thresholds) but do not compare to costs of an equivalent option without vesting.
49We anticipate that if the vesting times are different, there will be a small impact on some of the thresholds

of options which have vested when other options remain unvested, but we do not believe this will alter our main

findings or have a significant quantitative effect.
50Incorporation of exogenous job termination would result in a free boundary problem of reaction-diffusion type.

Our transformation to the heat equation (see Appendix) would not apply and we would need to use alternative

methods.
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6 Conclusion

In this paper we have extended the literature on utility based valuation of ESOs to model the

behavior of an executive with a portfolio of options with various strikes and time to maturity.

Since unhedgeable risk varies non-linearly with portfolio size and composition, the executive’s

exercise strategy and thus also the shareholder cost of an option held as part of a portfolio

depend on the remainder of the executive’s ESO portfolio. These portfolio effects are important

- lowering both the moneyness required for exercise and the shareholder cost of most options in

a portfolio. In fact, the proportional reduction in cost relative to stand-alone options even in

the case of portfolios of only two options can be over 40% for individual options and 20% for

portfolios. In contrast to a risk-neutral setting, both exercise thresholds and costs depend on an

option’s position in the optimal exercise order: when the exercise order switches, the thresholds

of options exercised earlier (later) jump down (up). Given these dependencies, the company

should re-evaluate the costs of all outstanding ESOs each time they give a new grant of options

to their executives - as executives may alter the moneyness and order at which they exercise

their existing options when they receive a new grant.

We use the model to explain several empirical findings in the literature - which options are

attractive to exercise first, how exercise can be induced by a new grant, and the prevalence of

early exercise. This highlights the importance of including portfolio effects in an empirical study

of executive exercise behavior and accounting for such effects in any measure based on exercise

behavior.

Whilst there is scope for further work on ESO portfolios, this paper has set out the key

principles of how portfolio effects impact ESO thresholds and costs. Firstly, for individual options

in portfolios, the option’s position in the portfolio’s optimal exercise order is the new key factor

determining both an option’s exercise threshold and its cost within the portfolio. Secondly, for

portfolios as a whole, what matters is the overall strength of the portfolio interaction effects. This

determines the discount for the portfolio as a whole and the moneyness on exercise of the first

option to be exercised in the portfolio. It depends on both the size and the overall composition of

the portfolio, increasing when an option is added to a portfolio, and reaching a maximum when

the strike prices of longer-dated options are slightly less than those of shorter-dated options

within the portfolio. Finally, the relevant cost of an option grant is its incremental cost, which

depends on the composition of the portfolio it is being combined with, and which is always

lower than the option’s stand-alone cost, since it reflects the greater additional unhedgeable risk
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associated with the option’s addition to the executive’s existing portfolio.

7 Appendix

7.1 The Model

We first use separation of variables and a power transformation51 via

V Π(u,w, s) = M(u,w, T̃ )HΠ(u, s)1/(1−ρ2)

to restate (4), (5) and (9) as

HΠ(u, Su)
1/(1−ρ2) ≤ min

π∈Π
{e−γ(1−ρ2)(Su−Kπ)+er(T̃−u)

HΠ\{π}(u, Su)
1/(1−ρ2)} (13)

∂HΠ

∂t
+ L̃HΠ ≥ 0 (14)

where the differential operator L̃ is defined by

L̃ =
η2s2

2

∂2

∂s2
+ (r − q)s

∂

∂s
(15)

and

τ (|Π|) = inf{t ≤ u ≤ Tmin : HΠ(u, Su) = min
π∈Π

{e−γ(1−ρ2)(Su−Kπ)+er(T̃−u)
HΠ\{π}(u, Su)}}. (16)

The boundary conditions are given by HΠ(u, 0) = 1 and

∀{π} ∈ Π;
HΠ(Tπ, STπ )

HΠ\{π}(Tπ, STπ)
=

M(Tπ,XTπ + (STπ −Kπ)
,T̃ )

M(Tπ,XTπ , T̃ )
= e−γ(1−ρ2)(STπ−Kπ)+er(T̃−Tπ)

and we have H∅(u, Su) = 1.

We see in (16) that associated with each HΠ(u, Su) there is a free boundary

S(|Π|)(u) = inf{s ≥ 0 : HΠ(u, s) = min
π∈Π

{e−γ(1−ρ2)(s−Kπ)+er(T̃−u)
HΠ\{π}(u, s)};u ∈ [t, Tmin]}

(17)

which represents the exercise boundary for the next option when the options Π remain. As with

standard American options (see (26)), the optimal exercise times can be represented as

τ (|Π|) = inf{t ≤ u ≤ Tmin : Su = S(|Π|)(u)}. (18)

51The separation of variables is simply the observation that wealth factors out under exponential utility. We

follow many authors who employ the power transformation in pricing of European and American options under

exponential utility, for example Henderson (2005).
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Subjective Value

We can use the definition of the subjective value to the executive in (12) to re-derive the free

boundary problem as follows: pΠ(t, s) solves

∂pΠ

∂t
+ L̃pΠ − rpΠ −

1

2
γ(1− ρ2)η2s2er(T̃−t)

(

∂pΠ

∂s

)2

≤ 0 (19)

pΠ(t, s) ≥ max
π∈Π

{(s−Kπ)
+ + pΠ\{π}(t, s)} (20)

with boundary conditions pΠ(t, 0) = 0 and

∀{π} ∈ Π; pΠ(Tπ, STπ)− pΠ\{π}(Tπ, STπ) = (STπ −Kπ)
+. (21)

Shareholder Costs

We can use the optimal exercise threshold for each option Sπ(u);π ∈ Π as input into the

shareholder costs. To compute the shareholder cost of a portfolio Π, we compute the cost Cπ

for each option π ∈ Π and sum over all options. Each Cπ satisfies for s ≤ Sπ(t)

∂Cπ

∂t
+ L̃Cπ = 0 (22)

with boundary conditions ∀π ∈ Π, Cπ(u, 0) = 0, Cπ(Tπ, STπ) = (STπ−Kπ)
+ and Cπ(u, Sπ(u)) =

(Sπ(u)−Kπ)
+;u < Tπ.

Black Scholes

Consider a single call option Y with strike KY , maturity TY and assume we price under the

Black Scholes model. The value V BS(u, Su) of holding the American call solves the well known

variational inequalities:

V BS(u, Su) ≥ (Su −KY )
+ (23)

∂V BS

∂t
+ L̃V BS − rV BS ≤ 0. (24)

Boundary conditions are given by V BS(u, 0) = 0 and V BS(TY , STY
) = (STY

− KY )
+. The

optimal exercise time τBS is defined by

τBS = inf{t ≤ u ≤ TY : V BS(u, Su) = (Su −KY )
+}

which defines an exercise boundary

SBS(u) = inf{s ≥ 0 : V BS(u, s) = (s−KY )
+;u ∈ [t, TY ]} (25)

and thus

τBS = inf{t ≤ u ≤ TY : Su = SBS(u)}. (26)
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7.2 Numerical Method

Utility Model

We first transform to work with the heat equation which is useful for comparison to Black

Scholes and to simplify the coding. Define new variables x ∈ R and τ ∈ [0, 0.5η2T̃ ] via s = δex

and t = T̃ − τ/0.5η2, where δ is a constant. Write HΠ(T̃ − τ/0.5η2, δex) = δuΠ(x, τ)e−ξx−ξ2τ

where ξ = 0.5((r − q)/0.5η2 − 1). Then (14) is given by

∂uΠ/∂τ − ∂2uΠ/∂x2 ≤ 0 (27)

and (13) becomes

uΠ(x, τ) ≤ gΠ(x, τ) (28)

with

gΠ(x, τ) = min
π∈Π

{e−γ(1−ρ2)(δex−Kπ)+erτ/0.5η
2

uΠ\{π}(x, τ)}.

The boundary conditions are uΠ(xmin, τ) =
1
δ e

δxmin+δ2τ and

∀{π} ∈ Π;
uΠ(x, τπ)

uΠ\{π}(x, τπ)
= e−γ(1−ρ2)(δex−Kπ)+erτπ/0.5η2

where τπ = 0.5η2(T̃ − Tπ).

To solve (27)-(28) subject to the boundary conditions, we use a Crank Nicolson finite dif-

ference method on a uniform grid. The free boundary constraint (28) is enforced by a a

projected successive over relaxation algorithm (PSOR), see Wilmott et al (1995) for simi-

lar schemes in a Black Scholes framework. We restrict the domain R × [0, 0.5η2T̃ ] to a fi-

nite domain {(x, τ) : xmin ≤ x ≤ xmax, 0 ≤ τ ≤ 0.5η2T̃}. We introduce a uniform grid

with nodes {(xmin + j∆x, n∆τ) : j = 0, 1, ..., jmax , n = 0, 1, ..., nmax} with grid spacings

∆x = (xmax − xmin)/jmax, ∆τ = 0.5η2T̃ /nmax. We apply discrete approximations Un
j ≈

uA(xmin + j∆x, n∆τ) and approximate the derivatives by:

∂uΠ(x, τ)

∂τ
≈

Un+1
j − Un

j

∆τ

∂2uΠ(x, τ)

∂x2
≈

1

2

(

Un
j+1 − 2Un

j + Un
j−1

(∆x)2
+

Un
j+1 − 2Un

j + Un
j−1

(∆x)2

)

giving

Un+1
j −

1

2
a(Un+1

j−1 − 2Un+1
j + Un+1

j+1 ) = Un
j +

1

2
a(Un

j−1 − 2Un
j + Un

j+1) (29)
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where a = ∆τ/(∆x)2. We solve (29) (together with the discretized boundary conditions) back-

ward in time using the PSOR algorithm to compute the optimal boundary s∗ = δexmin+j∗∆x at

each time step n∆τ by finding the minimum index j = j∗ such that Un
j∗ = gΠ(xmin+j∗∆x, n∆τ).

Shareholder Costs

Similar transformations and approximations are used to solve (22) together with the given

boundary conditions. (In this case there is no free boundary, so we do not require the PSOR.)

Black Scholes

Each option in the portfolio can be treated separately under the Black Scholes model since

prices are linear. It’s price solves (23) and (24) together with the given boundary conditions.

We follow the same transformation to the heat equation and numerical finite difference scheme

as outlined earlier.

Robustness

We perform various robustness checks for the utility model algorithm. We experimented with

the size of the grid versus speed and use jmax = 2000, nmax = 9000, xmin = −3 and xmax = 3.

Using the utility model algorithm gives thresholds and values that converge to the correct Black

Scholes quantities (calculated from (23) and (24)) as γ → 0 or ρ → 1. For large maturities

and identical strikes, we can recover the time-homogeneous thresholds and values derived in

explicitly by the perpetual approximation of Grasselli and Henderson (2009).
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Figure 1: Portfolio of Two identical options with KY = 10, TY = 5.

Parameter values: γ = 0.2, r = 0.05, q = 0.02, η = 0.4, ρ = 0.
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Figure 2: Option Y has KY = 10, TY = 5; option Z has TZ = 10.

In the left panel, KZ = 11; in the right panel KZ = 4. Parameter

values where not stated: ρ = 0.
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Figure 4: Option Y has KY = 10, TY = 5; option Z has KZ = 8, TY = 10. Parameter values:

γ = 0.1, r = 0.05, q = 0.02, η = 0.4, ρ = 0.

Figure 5: Stylized representation of strike/maturity combinations giv-

ing various exercise ordering strategies for base option Y with strike

KY , maturity TY and a second option with a varying strike K and

maturity T .
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Figure 7: Top left graph: Cost of option Y , Top right graph: Switchover time, T ∗, Bottom left

graph: Cost of option Z, Bottom right graph: Ratio of cost of portfolio to sum of stand-alone

costs; all vs strike price of option Z. Option Y has KY = 10, TY = 5; option Z has TZ = 10.

Parameter values: γ = 0.2, r = 0.05, q = 0, η = 0.2, ρ = 0.
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Figure 9: Ratio of incremental cost of new grant Z in portfolio with existing option Y , as a

proportion of stand-alone cost of Z for different TZs. Left graph vs KZ with S = 10, right graph

vs S for ATM option grant of Z. Option Y has KY = 10, TY = 5. Parameter values: γ = 0.2,

r = 0.05, q = 0, η = 0.2, ρ = 0.
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